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Abstract  — Solar cell cracking is a potential reliability concern 
that may affect the long-term performance of modules that 
experience mechanical stress in the field. We present a 
methodology that utilizes EL images to predict power loss due to 
cell cracking. We explored pixel intensity histogram 
normalization methods to generalize this approach to a wide 
range of measurement conditions. The final optimized EL metric 
exhibits a strong correlation with power loss for a range of 
module technologies where a 1% increase in the dark area due to 
cracks results in a 3% loss in performance. This approach 
enables field EL mapping to translate to module Pmax mapping 
across a system.  

Index Terms — module reliability, mechanical durability, 
electroluminescence, cell cracking. 

I. INTRODUCTION 

Long-term reliability of photovoltaic modules and systems 
is critical for solar energy to be a cost competitive alternative 
to traditional energy sources. Cell cracking has become a 
major concern in recent years due to cost related module 
design changes that have increased cells’ susceptibility to 
breakage, including declines in wafer thickness, increased 
module areas, and increased wafer diameters [1], [2]. The 
long-term impact of cell cracking is not yet clear. To quantify 
the impact of cell cracking on long term performance, 
modules with crack damage will need to be monitored over 
time as they age in the field. Unfortunately, obtaining accurate 
power data on large numbers of modules in the field is time 
consuming and often cost prohibitive. In this work we aim to 
develop electroluminescence (EL) based metrics that can be 
used as a proxy for electrical performance measurements. 

II. EXPERIMENTAL

To develop a correlation between power loss and any EL 
based metric, a large dataset of EL images and performance 
data are needed that cover a broad range of module 
performance conditions. To achieve this, we utilized the 
LoadSpot system from BrightSpot Automation which allows 
for in-situ module performance characterization during 
mechanical loading[3]. EL images were captured using a 
modified DSLR camera, and current-voltage (I-V) data was 
collected using a Sinton FMT-350. The module bias used for 

EL imaging was the nameplate short-circuit current, and the 
bias current was kept constant during the mechanical test 
sequence. Data was collected as a front side load was applied 
to the module in steps of 400Pa up to a maximum of 5400Pa. 
This process was carried out for several modules over a range 
of manufacturers and technologies. 

To derive a quantitative metric from an EL image, the 
image pixel intensity histogram was used. A threshold was 
applied to the histogram, and any pixel intensity below that 
threshold was characterized as contributing to a “dead area” 
that was quantified as an area fraction in percentage terms. 
Using the same threshold for the entire sequence of images, 
the “dead” area fraction calculated for each image was plotted 
against the relative power as determined by the I-V 
measurements. An example of this plot is shown in Fig. 1. 
From this type of plot, it becomes possible to relate area 
fraction determined from the EL image to the relative power 
loss for that particular module. 

Fig. 1. Normalized module power vs. "dead" area fraction for one 
module using each step in the mechanical loading sequence as one 
point of the graph. The best-fit line for the data is also displayed to 
show the strong linear correlation. 

III. HISTOGRAM NORMALIZATION

The objective of this work was to develop a generic 
methodology that could be applied to a variety of module 
types and that was not tied to a specific set of measurement 
conditions (e.g. exposure time, bias current, temperature, etc.). 
To achieve this, we explored several methods to normalize the 
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EL histograms prior to an application of threshold. We studied 
two main approaches to histogram normalization involving 
identification of key regions within the pixel intensity 
histograms. The first method was to identify the peak value 
and use that as the reference point. The second approach was 
to find the maximum and minimum intensities observed 
within the image, excluding noise, and use both of those 
points as a reference.  

An example of the raw pixel intensity histograms for a 
series of EL images, along with the resulting histograms for 
both normalization methods, are shown in Fig. 2. As is seen 
with the original histograms, there is some variability that 
could be the result of temperature variation during the testing 
or due to the constant bias conditions during the experiment 
even though the module performance was degrading as cracks 
were generated within the cells. Each of the normalization 
methods used resulted in a better alignment of the histograms. 
After normalization, the threshold used for calculating the 
“dead” area fraction is applied consistently across all images. 

 

 
Fig. 2. Example of the EL pixel intensity histograms, including the 
original (i.e. un-corrected) and after both normalization methods. 
Each line on the graph represents a unique image captured for one 
module at each step during the mechanical loading sequence. 

IV. THRESHOLD DETERMINATION 

When assessing the impact of cracks on module 
performance, it is common to look for dark areas in an EL 
image that signify regions that have been isolated from the 
interconnect wires. To quantify this so called “dead area”, 
previous work has explored the use of an intensity threshold in 
which any pixel below this threshold is used to calculate an 
area fraction associated with these “dead” region[4]. This 
approach required the use of a reference cell or module, 
characterized using the same measurement settings to 
determine the appropriate intensity threshold value that was 
only relevant for the particular module type. In this work we 
aim to generalize this approach so that no prior knowledge is 
required to identify what intensity threshold to select for a 
given EL image. We achieved this by utilizing the 
normalization methods described above.  

To determine the most appropriate threshold, the area 
fraction was calculated for each threshold value for the entire 
range of intensity values. Using each image and the associated 
I-V measurement at each step of the mechanical loading 
sequence, plots of area fraction vs power were generated. 
Power was normalized considering the initial, non-degraded 
measurement as 100%. An example of this type of plot is 
shown in Fig. 1. The quality of the correlation for each plot 
was determined using the r2 value for a linear-fit applied to the 
data. This process was carried out for all threshold values. 

Plots of r2 vs. threshold were then generated for each 
module and each normalization method. These plots allow us 
to identify which threshold, and corresponding area-fraction, 
is most predictive of module power degradation. An example 
of this plot, prior to any histogram normalization, is shown in 
Fig. 3 for one module used in this work. The best correlation, 
determined from the highest r2 value, was found in the lower 
range of pixel intensities.  

For every module used in this work, the same analysis was 
performed. The correlation between the area fraction and 
relative power was improved after normalization of the pixel 
intensity histograms. Before normalization r2 values ranged 
from 0.67 to 0.93. After normalization r2 values ranged from 
0.88 to 0.98, with several modules exceeding 0.95. These 
results emphasize the importance of the normalization process. 
For modules with poor quality linear fits (i.e. low r2 values) 
prior to normalization, superior results were obtained using 
the upper and lower bounding normalization method instead 
of the peak normalization method. This can be explained by 
the presence of new cracks, generated during the mechanical 
loading sequence, that effectively shift the peak of the 
histogram lower as more pixels have lower EL intensity due to 
partially disconnected regions.  

 



 

 
 

Fig. 3. Example of r2 as a function of threshold value for the same 
module as in Fig. 2 for (a) the original, uncorrected histograms, (b) 
the peak normalization method, and (c) the upper and lower bound 
normalization method. The peak r2 value, corresponding to the best 
linear fit, is highlighted. The threshold axis in (a) corresponds to the 
intensity range of 0-256 for a standard 8-bit image. The threshold 
axis in (b) and (c) are scaled according to the normalization method. 
 

In a final step to generalize our findings, the optimal 
threshold values obtained for the modules were compared to 
see if they were consistent. We found that when utilizing the 
upper and lower bounding normalization method, the optimal 
threshold was in the range of 0.28 and 0.31. This implies that 
for a range of module types including both mono and multi-
crystalline technologies, a consistent threshold could be used 
as a metric to quantify the effective “dead area” due to cell 
cracking. Examples of the resulting EL images with the “dead 
area” highlighted in red are shown in Fig. 4. It is interesting 
that the “dead area” determined using a purely mathematical 
evaluation of the histograms corresponds quite well to what 
would be perceived as “dead area” by a skilled researcher.  

 
 
 

 
Fig. 4. Example of EL images with “dead area” highlighted in red. 
 

V. CORRELATION WITH POWER 

The final step to a comprehensive metric is to determine the 
correlation factor between the area fraction and normalized 
power. The optimal threshold value was determined to be 0.29 
when averaging results after the histograms were normalized 
using the upper and lower bounding method (i.e. the upper 
bound is set to 1 and lower bound is set to 0). The power vs. 
area fraction for one group of mono-crystalline modules is 
shown in Fig. 5. For this group of modules, a consistent 
correlation factor of approximately 3% degradation per every 
1% increase in the “dead area” fraction was determined. 



 

 
Fig. 5. Plot of normalized power vs. area fraction for a group of 
mono-crystalline modules using the upper and lower bounding 
histogram normalization process and the optimized threshold of 0.29. 

VI. CONCLUSIONS 

This work presented a methodology that can be used to 
quantify the “dead area” in EL images due to cell cracking and 
relate this metric to power loss. We explored methods to 
normalize EL pixel intensity histograms to make the process 
generic to a wide variety of measurement conditions. 
Although this technique was specifically tailored to cracks, the 
same type of analysis could be used for other degradation 
mechanisms as well. 

With the availability of systems that can capture EL images 
for field installed modules, this analysis could be used in place 

of module I-V measurements. This would allow for a quick 
evaluation of performance loss that system operators could 
utilize after weather events like hurricanes, hail, or severe 
snow to evaluate the cell crack damage or on regularly 
scheduled basis for modules that are known to be prone to cell 
cracking. This could guide decisions on the necessity of 
module replacement or for selection of specific modules for 
additional performance characterization. 
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